Tag Archives: high torque dc gear motors

China OEM Custom Micro Planetary Reducer Ratio 3: 1-1200: 1, Powder Metallurgy Machinery Gear Reducer Speed Transmission High Torque Precision Gearboxes for DC Motors synchromesh gearbox

Product Description

We are 1 of the leading manufacturer of planetary gearboxes through powder metallurgy. A gearbox is a power transmission device to produce high torque by reducing the drive speed or increase the drive speed the other way. Planetary gearbox consisting 3 components: sun gear, planet gear and ring gear . A Sun gear is a gearwheel in a planetary gear system, that rotates around its own axis and has other gears (planet gears) that rotate around it. Much like the Sun and planets in our solar system. The amount of planetary gears in a gearbox varies based on the gear ratio. Most planetary gearboxes have from 2 to 5 planet gears.
When looking at planetary gears, the strength of the gearbox is usually determined by the size of the sun gear. Larger sun gears will allow for higher torque values. The planet carrier,Its objective is to hold up to gears of the same size, which mesh with the sun gear.

 



Planetary Gearbox advantages:

  1. Provides high torque at slow speeds .
  2. The shafts are made up of hardened and tempered alloy steel .
  3. Sun gears ,planet gears and ring gears are made of powder metallurgy and sintering steel
  4. Low noise levels.
  5. Good quality taper roller bearings for input and output shafts .
  6. High efficiency .

We produce precision metal gearboxes through powder metallurgy .
Powder metallurgy is a metal working process in which finely-powdered metal is mixed with binder material to create a”feedstock” that is then shaped and solidified using injection molding.The ability to combine several operations into 1 process ensures MIM is successful in saving lead times as well as costs, providing significant benefits to manufacturers. The metal injection molding process might be a green technology due to the significant reduction in wastage compared to “traditional” manufacturing methods.

MIM can produce parts where it is difficult, or even impossible, to efficiently manufacture an item through other means of fabrication. Increased costs for traditional manufacturing methods inherent to part complexity, such as internal/external threads, miniaturization, or identity marking, typically do not increase the cost in a MIM operation due to the flexibility of injection molding.
The window of economic advantage in metal injection molded parts lies in complexity and volume for small-size parts. MIM materials are comparable to metal formed by competing methods, and final products are used in a broad range of industrial, commercial, medical, dental, firearms, aerospace, and automotive applications. Dimensional tolerances of ±0.3% are common and machining is required for closer tolerances .
MIM technology has found increased applications in the commercial world – from home appliances to watches, automobiles to aerospace, and medical to orthodontics.

The advantages of metal injection molding for metal fabrications :

  • Highest degree of design freedom for complex shapes and geometries
  • Provides practical economic solutions to increasingly stringent material and product design requirements
  • Functional integration of various features, such as lateral drillings, interior and exterior threads and gear teeth.
  • Components can be heat and surface treated, plated, welded and soldered
  • Very high volume production series run on fully-automatic injection molding machines using multi-cavity tools

 

Metal injection moulding process custom metal parts 

MIM prcess in each steps :
1. Metal powers option
2. Binders
3. Mixing
4. Molding
5. De-binding
6. Sintering
7. post sintering operation such as polishing 
8. Mechanical properties MIM parts

Customized metal parts specification
 

Product type Custom high precision small gearboxes for DC motors
Material steel 
Process Powder metallurgy , metal injection molding 
Treatment plating ,sand blasting , PVD , coating
Tolerance ±0.3%
Drawing format DWG ,IGS , STP
Delivery time  20 days for mass production

Custom metal parts

Workshop

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car, Car Parts
Function: Distribution Power, Clutch, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction, Speed Increase
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Three-Step
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

agricultural gearbox

Considerations for Heavy-Duty Farming Gearboxes

Heavy-duty farming applications require robust and reliable gearboxes that can withstand high loads, harsh conditions, and frequent use. Here are the key considerations for selecting gearboxes for heavy-duty farming:

  • Load Capacity: Heavy-duty gearboxes must have a high load-carrying capacity to handle the demands of agricultural machinery, such as tillers, plows, and combines.
  • Material Durability: Gearboxes should be constructed from durable materials, such as hardened steel or cast iron, that can withstand the stresses and impacts associated with heavy-duty tasks.
  • Sealing and Protection: Effective sealing and protection mechanisms, such as robust seals and gaskets, prevent the ingress of dirt, water, and contaminants that can cause premature wear and damage.
  • Lubrication System: A reliable and efficient lubrication system is crucial for heavy-duty gearboxes to ensure proper lubrication of components under high loads and temperatures.
  • Heat Dissipation: Heavy-duty applications generate significant heat. Gearboxes should have efficient heat dissipation mechanisms, such as cooling fins or oil coolers, to prevent overheating and maintain performance.
  • Design and Construction: Gearbox design should incorporate reinforced housing, larger bearings, and robust gears to handle heavy loads without compromising structural integrity.
  • Alignment and Mounting: Proper alignment and mounting are essential to ensure smooth and efficient power transmission. Misalignment can lead to increased wear and reduced gearbox lifespan.
  • Maintenance Accessibility: Heavy-duty gearboxes should be designed for easy maintenance access. Features such as removable covers and inspection points simplify servicing and repairs.
  • Compatibility: Gearboxes should be compatible with the specific machinery and tasks they will be used for. Customizable gear ratios and output shaft configurations enhance versatility.
  • Reliability and Longevity: Heavy-duty gearboxes should be built to last, with quality craftsmanship and components that can withstand the demanding conditions of agricultural operations.
  • Safety: Safety features, such as guards and emergency shutdown mechanisms, are essential to protect operators and nearby personnel from potential hazards.
  • Environmental Considerations: Gearbox designs should consider environmental regulations and emissions standards to minimize the impact on the environment.
  • Cost-Effectiveness: While heavy-duty gearboxes require a higher upfront investment, their durability and performance contribute to long-term cost-effectiveness by reducing downtime and the need for frequent replacements.

By carefully considering these factors, farmers can select the appropriate heavy-duty gearboxes that enhance productivity and reliability in their farming operations.

agricultural gearbox

Potential Challenges in Maintenance and Repairs of Agricultural Gearboxes

Maintenance and repairs of gearboxes in agriculture can pose several challenges:

  • Harsh Environments: Agricultural machinery operates in challenging environments with exposure to dirt, debris, moisture, and varying temperatures. These conditions can accelerate wear and corrosion, necessitating frequent maintenance.
  • Heavy Workloads: Gearboxes in farming equipment often handle heavy workloads, leading to increased stress on components. This can result in faster wear and tear, requiring more frequent inspections and part replacements.
  • Accessibility: Some gearboxes are located in hard-to-reach areas of machinery. This makes regular maintenance and repairs more challenging, as technicians may need specialized tools and equipment to access and service the gearboxes.
  • Specialized Knowledge: Proper maintenance of agricultural gearboxes requires specialized knowledge and skills. Inadequate understanding of gearbox mechanics and maintenance practices can lead to improper repairs, reducing the gearbox’s lifespan and efficiency.
  • Costs: Repairing or replacing gearbox components can be costly, especially for heavy-duty agricultural machinery. Farmers need to consider both the direct costs of parts and labor, as well as potential downtime during repair processes.
  • Downtime: The downtime required for gearbox maintenance or repairs can impact farming operations, especially during critical planting or harvesting seasons. Efficient scheduling and backup equipment can help mitigate this challenge.
  • Availability of Parts: Obtaining replacement parts for older or less common gearbox models can be challenging. Farmers may need to source parts from specialized suppliers, leading to potential delays in repairs.

Addressing these challenges requires proactive maintenance planning, regular inspections, proper training of maintenance personnel, and sourcing spare parts in advance.

agricultural gearbox

Role of Agricultural Gearboxes in Agricultural Machinery

An agricultural gearbox is a specialized type of gearbox used in various agricultural machinery and equipment. It plays a crucial role in the proper functioning of agricultural equipment by transmitting power and torque from the engine to the different components that perform specific tasks in the field.

Agricultural gearboxes are designed to withstand the demanding conditions of agricultural operations, including exposure to dust, dirt, moisture, and heavy loads. They are commonly used in a wide range of agricultural machinery, including tractors, combines, tillers, sprayers, and more.

The primary functions of agricultural gearboxes include:

  • Power Transmission: Agricultural gearboxes transmit power from the engine to various components, such as wheels, blades, and belts, enabling them to perform their respective tasks.
  • Speed Control: Gearboxes allow operators to control the speed and output torque of agricultural machinery. Different tasks require different speeds and levels of torque, and gearboxes provide the necessary adjustments.
  • Direction Change: Many agricultural operations require changing the direction of rotational motion. Gearboxes enable smooth and efficient direction changes without the need for complex mechanical arrangements.
  • Adaptation to Tasks: Agricultural gearboxes are equipped with various gears and shafts that can be configured to match the requirements of specific tasks, such as plowing, planting, harvesting, and more.

These gearboxes come in different configurations, such as straight-cut gears, helical gears, and planetary gears, depending on the specific application and requirements. The choice of gearbox type, gear ratio, and design factors contribute to the overall performance, efficiency, and durability of agricultural machinery.

Regular maintenance and lubrication are essential to ensure the longevity and reliable operation of agricultural gearboxes. Proper care and upkeep help prevent premature wear and damage, ensuring that the machinery performs optimally throughout the farming seasons.

China OEM Custom Micro Planetary Reducer Ratio 3: 1-1200: 1, Powder Metallurgy Machinery Gear Reducer Speed Transmission High Torque Precision Gearboxes for DC Motors   synchromesh gearbox	China OEM Custom Micro Planetary Reducer Ratio 3: 1-1200: 1, Powder Metallurgy Machinery Gear Reducer Speed Transmission High Torque Precision Gearboxes for DC Motors   synchromesh gearbox
editor by CX 2024-05-10